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Solution to Assignment 11

Section 9.1: no. 8, 9, 11, 13.

(8). Take an =
(−1)n√

n
. You may use definition to show it converges, but later you can use the

Alternating Test.

(9). For ε > 0, there is some n0 such that

|
n∑

k=m

ak| < ε/2 , ∀m,n ≥ n0 .

But then
nan = (n− n0)an + n0an ≤ an0 + · · ·+ an + n0an < ε/2 + n0an .

As
∑
an converges implies limn→∞ an = 0, we can find some n1 ≥ n0 such that n0an < ε/2 for

all n ≥ n1. Putting things together, for n ≥ n1,

0 ≤ nan <
ε

2
+ n0an < 2× ε

2
= ε .

(11). The assumption implies that there is some α and n0 such that |n2an−α| ≤ 1 for all n ≥ n0.
Therefore, ∣∣∣∣∣

n∑
k=m

ak

∣∣∣∣∣ ≤ (|α|+ 1)

n∑
k=m

1

k2
, n,m ≥ n0 .

As
∑
n−2 < ∞, for ε > 0, there is some n1 ≥ n0 such that

∑n
k=m k

−2 < ε/(|α| + 1), so
|
∑n

k=m ak| < ε for all m,n ≥ n1 too.

(13a). √
n+ 1−

√
n√

n
=

1

(
√
n+ 1 +

√
n)
√
n
≥ 1

2(n+ 1)
.

As
∑

1/(n+ 1) is divergent, this series is also divergent.

(13b). √
n+ 1−

√
n

n
=

1

(
√
n+ 1 +

√
n)n
≤ 1

n3/2
.

As
∑
n−3/2 <∞, this series is absolutely convergent.

Supplementary Exercise

You should use the new definition of exponential, logarithmic, cosine and sine functions in the
following problems.

1. Establish the following properties of the exponential and log functions: For every α > 0,
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(a)

lim
x→∞

xα

ex
= 0 ,

(b)
lim

x→−∞
|x|αex = 0 ,

(c)

lim
x→∞

log x

|x|α
= 0 ,

(d)
lim
x→0
|x|α log |x| = 0 .

Solution. (a). We can fix some k such that xα ≤ xk for all x ≥ 1. It suffices to prove
(a) by assuming α = k. Using the expression

ex = E(x) =

∞∑
n=0

xn

n!
≥ xk+1

(k + 1)!
, x > 0 ,

we have

0 ≤ xk

ex
≤ (k + 1)!

xk+1
xk =

(k + 1)!

x
→ 0 , as x→∞ ,

done.

(b). Follow from (a) after letting x be −x.

(c). Letting y = log x, x ≥ 1,
log x

|x|α
is turned into

y

eαy
, and the desired conclusion follows

from (a).

(d). Let y = 1/|x| and then use (c).

Note. This exercise is about the growth of the exponential and logarithmic functions com-
pared to powers. EVERY math major should know it.

2. Establish the following properties of the cosine and sine functions:

(a)

lim
x→0

sinx

x
= 1 ,

(b)

lim
x→0

1− cosx

x2
=

1

2
,

Solution. After we have rigorously proved the derivative of the sine function is cosine and
cos 0 = 1 as well as the L’Hospital Rule, we can use them to get (a). Similarly we have
(b). An alternative way is to apply the Taylor’s Expansion Theorem.

Note. Again EVERY math major should know this.

3. Study the improper integrability of the following integrals:

(a) ∫ 1

0
x−1/4 log x dx,
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(b) ∫ 1

0

(1− cosx) log x

x3
dx ,

(c) ∫ ∞
0

sinx

ex − 1
dx ,

(d) Optional. ∫ ∞
0

sinx

x
dx .

Solution. (a). The integrand is unbounded near 0. Using limx→0+ x
α log x = 0 for every

positive α, we let α = 1/4. For ε = 1, there is some δ such that |x1/4 log x| < 1 for
x ∈ (0, δ). Hence x−1/4 log x ≤ x−1/4x−1/4 = x−1/2. Therefore,∣∣∣∣∫ c

a
x−1/4 log x dx

∣∣∣∣ ≤ ∫ c

a
x−1/2 dx = 2c1/2 − 2a1/2 → 0 ,

as a, c→ 0. By Cauchy Criterion, the improper integral exists.

(b) (1 − cosx)/x2 tends to 1/2. We can fix some δ such that 1/4 ≤ (1 − cosx)/x2 for
x ∈ (0, δ). Then

(1− cosx)| log x|
x3

≥ | log x|
4x

≥ 1

4x
, x ∈ (0, ρ) ,

for some ρ ≤ δ (to make sure that | log x| ≥ 1). Therefore,∫ ρ

a

(1− cosx) log x

x3
dx ≥

∫ ρ

a

1

4x
dx→∞,

as a→ 0+. We conclude that the improper integral does not exist.

(c) We use ex > 1 + x for x ≥ 0 to get 0 ≤ sinx/(ex − 1) ≤ sinx/x ≤ 1. Hence∫ a′

a

sinx

ex − 1
dx ≤ a′ − a→ 0,

as a′ − a→ 0. It shows that ∫ 1

0

sinx

ex − 1
dx

exists. On the other hand, use ex > 1 + x2/2 to get | sinx|/(ex − 1) ≤ 2/x2. Hence∫ b′

b

| sinx|
ex − 1

dx ≤
∫ b′

b

2

x2
dx = 2

(
1

b
− 1

b′

)
→ 0 ,

as b, b′ →∞. It shows ∫ ∞
1

sinx

ex − 1
dx

exists too. Hence this improper integral exists.

(d) Sketchy proof. No trouble at 0. We express the integral as

∞∑
n=0

∫ (n+1)π

nπ

sinx

x
dx =

∞∑
n=0

∫ π

0

sin(nπ + y)

nπ + y
dy =

∫ π

0

(−1)n sin y

nπ + y
dy .
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For two consecutive terms 2n and 2n+ 1, they have different signs and∫ π

0

sin y

2nπ + y
dy −

∫ π

0

sin y

(2n+ 1)π + y
dy =

∫ π

0

π sin y

(2nπ + y)((2n+ 1)π + y)
dy ≤ C

n2
,

which shows that the improper integral exists.

4. Optional. Consider
∑∞

n=1 an and let
∑∞

n=1 bn and
∑∞

n=1 cn where bn = a+n and cn = a−n
(so an = a+n − a−n ). Show that

∑∞
n=1 bn and

∑∞
n=1 cn both are divergent to infinity when∑∞

n=1 an is conditionally convergent.

Solution. In case one the these series is convergent, say
∑
bn, let us show that

∑
cn is also

convergent, so
∑
|an| =

∑
bn +

∑
cn is also convergent, contradicting that

∑
an is only

conditionally convergent. Let ε > 0, there is some n0 such that |am+1 + · · · + an| < ε/2
for all n,m ≥ n0. On the other hand, choose n1 ≥ n0, bm+1 + · · · + bn < ε/2 for all
n,m ≥ n1. By subtracting these two inequalities and by choosing indices properly, we
have cm+1 + · · ·+ cn < ε for all n,m ≥ n1, done.

5. Optional. Show that every conditionally convergent series admits a rearrangement which
is divergent to infinity.

Solution. Adapting the notation in the previous problem, first we pick b1, · · · , bn1 such
that b1+· · ·+bn1 > 1+c1. Next, add −c1 to the finite sequence to get {b1, b2, · · · , bn1 ,−c1}.
Then add bn1+1, · · · , bn2 so that b1 + b2 + · · · + bn1 − c1 + bn1+1 + · · · + bn2 > 2 + c2.
Add −c2 to get {b1, b2, · · · , bn1 ,−c1, bn1+1, · · · , bn2 ,−c2}. Then add bn2+1, · · · , bn3 so that
b1 + · · · − c2 + bn2+1 + · · · + bn3 > 3 + c3 . By repeating the construction, we obtain a
rearrangement whose partial sum is greater than any n. Note that this is possible because∑
bn =∞.

Note. A theorem of Riemann states that given any number s including ±∞, there is a
rearrangement on a conditionally convergent series converging to this number. You may
google for it.


